Skip to main content

Microsoft Excel

The UnstructuredExcelLoader is used to load Microsoft Excel files. The loader works with both .xlsx and .xls files. The page content will be the raw text of the Excel file. If you use the loader in "elements" mode, an HTML representation of the Excel file will be available in the document metadata under the text_as_html key.

from langchain_community.document_loaders import UnstructuredExcelLoader
loader = UnstructuredExcelLoader("example_data/stanley-cups.xlsx", mode="elements")
docs = loader.load()
docs[0]
Document(page_content='\n  \n    \n      Team\n      Location\n      Stanley Cups\n    \n    \n      Blues\n      STL\n      1\n    \n    \n      Flyers\n      PHI\n      2\n    \n    \n      Maple Leafs\n      TOR\n      13\n    \n  \n', metadata={'source': 'example_data/stanley-cups.xlsx', 'filename': 'stanley-cups.xlsx', 'file_directory': 'example_data', 'filetype': 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'page_number': 1, 'page_name': 'Stanley Cups', 'text_as_html': '<table border="1" class="dataframe">\n  <tbody>\n    <tr>\n      <td>Team</td>\n      <td>Location</td>\n      <td>Stanley Cups</td>\n    </tr>\n    <tr>\n      <td>Blues</td>\n      <td>STL</td>\n      <td>1</td>\n    </tr>\n    <tr>\n      <td>Flyers</td>\n      <td>PHI</td>\n      <td>2</td>\n    </tr>\n    <tr>\n      <td>Maple Leafs</td>\n      <td>TOR</td>\n      <td>13</td>\n    </tr>\n  </tbody>\n</table>', 'category': 'Table'})

Using Azure AI Document Intelligence

Azure AI Document Intelligence (formerly known as Azure Form Recognizer) is machine-learning based service that extracts texts (including handwriting), tables, document structures (e.g., titles, section headings, etc.) and key-value-pairs from digital or scanned PDFs, images, Office and HTML files.

Document Intelligence supports PDF, JPEG/JPG, PNG, BMP, TIFF, HEIF, DOCX, XLSX, PPTX and HTML.

This current implementation of a loader using Document Intelligence can incorporate content page-wise and turn it into LangChain documents. The default output format is markdown, which can be easily chained with MarkdownHeaderTextSplitter for semantic document chunking. You can also use mode="single" or mode="page" to return pure texts in a single page or document split by page.

Prerequisite

An Azure AI Document Intelligence resource in one of the 3 preview regions: East US, West US2, West Europe - follow this document to create one if you don't have. You will be passing <endpoint> and <key> as parameters to the loader.

%pip install --upgrade --quiet  langchain langchain-community azure-ai-documentintelligence
from langchain_community.document_loaders import AzureAIDocumentIntelligenceLoader

file_path = "<filepath>"
endpoint = "<endpoint>"
key = "<key>"
loader = AzureAIDocumentIntelligenceLoader(
api_endpoint=endpoint, api_key=key, file_path=file_path, api_model="prebuilt-layout"
)

documents = loader.load()

Was this page helpful?


You can also leave detailed feedback on GitHub.